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ABSTRACT

This paper addresses the problem of automatic scattering fea-
ture selection for signal classification. While features derived
from group invariant scattering networks are quite effective
for signal classification. We argue that scattering networks
are not always the appropriate choice as they are not learned
for the objective at hand. In this paper, we explore jointly
learning a deep scattering convolution network with a support
vector machine by casting the problem as a multiple kernel
learning problem. The convolution paths of the network are
kernelized respectively to be selected in a large-margin con-
text. We deduce scattering paths from the corresponding ker-
nels after solving the kernel learning problem. Experiments
on several datasets demonstrate the effectiveness of the pro-
posed method over state-of-the-art techniques.

Index Terms— wavelet filter, multiple kernel learning,
scattering transform, digit analysis, texture recognition

1. INTRODUCTION

Many signal classification problems are solved by feature ex-
traction and regression. The ability for features to charac-
terize similarities within a class and discrepancies between
classes is called feature discrimination, which obviously af-
fects the classification accuracy. Thus, data-driven learning
of feature extractors has been investigated in a variety of con-
texts.

In [1], an evolution strategy was evolved to optimize a
wavelet packet-based feature representation for signal classi-
fication. In [2], a filter bank is learned in union with a hidden
Markov models-based classifier through an evolutionary al-
gorithm. [3] explored a joint learning of a filter bank layer
and a deep neural network. [4] proposed to jointly learn a
combination of wavelet coefficients and a classifier in a ker-
nelized large-margin context. More recently, Sangnier et al.
recommended to jointly learn the filters of a filter bank and
a Support Vector Machine (SVM) by casting the problem as
a multiple kernel learning problem [5][6]. However, these
works can be understood to optimize a single layer of filter
bank.
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Recently, the scattering convolution network has been a
promising approach for feature extraction of signal classifica-
tion, as shown in audio classification [7], image textures [8]
and object recognition [9]. It is a local descriptor which at-
tains high-order statistical information by cascading wavelet
convolution with non-linear modulus and averaging opera-
tors. It is thus translation invariant and linearizes small de-
formations. However, the number of convolution paths and
the corresponding wavelet filters are fixed given the scale and
rotation levels. The canonical scattering representations may
not be appropriate as it is not tuned to the task at hand.

This paper proposes a new approach to jointly learn a
deep wavelet scattering network and a Support Vector Ma-
chine classifier, which aims at finding an optimal cascade of
wavelet convolution layers, instead of a single convolution
layer. It ensures that the scattering network is learned for
the underlying task. By associating each path coefficient re-
sulting from a parameterized scattering transform to a kernel,
the problem can be formulated as a Multiple Kernel Learning
(MKL) problem with infinitely many kernels (Infinite Kernel
Learning, IKL) [10], which can be solved by active constraint
methods. The combined kernel is the product of base ker-
nels which corresponds to the tensor product of their feature
spaces [11]. It is worth mentioning that the multiple kernel
learning hereinafter is not a linear combination of base ker-
nels which focuses on the concatenation of individual kernel
feature spaces. This Generalized MKL (GMKL) leads to a
much higher-dimensional feature representation in compari-
son to feature concatenation. In turn, the wavelet convolution
paths can be deduced from the selected kernels. The general
framework of proposed method is illustrated in Fig. 1.

The remainder of the paper is organized as follows. Sec-
tion II presents the overall framework and details of proposed
method. Section III provides experimental results on various
datasets. Finally, Section IV concludes the paper with some
future challenges.

2. PROPOSED METHOD

2.1. Formulation

Suppose that we have a training set of instance-label pairs
{(xi, yi)}Ni=1 consisting ofC classes, xi ∈ Rn is the ith train-



Fig. 1. The proposed scattering network learning framework.

ing instance and yi ∈ {1, 2, . . . , C} is its label. Our goal is to
find a group of scattering operators {S1, S2, . . . , SC} as fea-
ture extractors for an SVM, where Sj is learned by promoting
maximum margin between the jth class and other classes in
a binary classifier training process. This can be achieved by
jointly optimizing the parameters of each scattering transform
Sj and an SVM classifier, which can be cast as an MKL prob-
lem in which kernel weights are learned jointly with model
parameters. According to GMKL, the problem can be formed
as:

min
fµ,b,ξ,µ

1

2
‖fµ‖2H + C

N∑
i=1

ξi + η1Tµ

s.t. yifµ(xi) + yib ≥ 1− ξi ∀i
ξi ≥ 0 ∀i
µ � 0

(1)

where η is the coefficient of the sparsity penalty for kernel
weight vector µ, H corresponds to the feature space that im-
plicitly constructs the combined kernel function kµ(· , ·). The
decision function f̂µ is:

f̂µ(x) =

N∑
i=1

α̂iyikµ(x, xi) + b̂ (2)

2.2. Parameterized scattering transform

Scattering transform computes cascades of wavelet trans-
forms and nonlinear modulus operators. Let ψ be a com-
plex directional wavelet whose imaginary and real parts are
orthogonal, ψλ is computed by rotating and dilating ψ respec-
tively by θ and 2j :

ψλ(u) = 2−2jψ(2−jθ−1u) (3)

where λ = 2−jθ, u ∈ R2. The wavelet transform of an input
signal x ∈ R2 is x?ψλ(u). To maintain the good localization
property of wavelets and construct invariability, the modulus
nonlinearity and spatial averaging are introduced:

U [λ]x = |x ? ψλ| (4)
S[λ]x = U [λ]x ? φ2J (5)

where the spatial window is φ2J (u) = 2−2Jφ(2−Ju).
Define a frequency-decreasing path p = (λ1, λ2, ..., λm),

|λi| < |λi+1|, i = 1, 2, ...,m− 1. The corresponding scatter-
ing propagator is:

U [p]x = U [λm] · · ·U [λ2]U [λ1]x

= |‖x ∗ ψλ1
| ∗ ψλ2

| · · · | ∗ ψλm | (6)

The output of the path p is computed by performing localized
integration:

S[p]x = U [p]x ? φ2J (7)

Averaging by the scaled spatial window φ2J guarantees trans-
lation invariance in a range smaller than 2J . For each path p,
the scattering coefficients S[p]x are down-sampled at inter-
vals proportional to 2J . As depicted in Figure 2, scattering
transform decomposes signals into finer scales and different
orientations iteratively. The paths of themth layer correspond
to the set Pm of all paths p = (λ1, λ2, ..., λm) of length
m. Typically, Scattering transforms decompose signals to the
second layer, i.e., m ∈ {0, 1, 2}, which is the case we con-
sider in this work. Concatenating coefficients of each path
gives the scattering feature representation. Considering the
strong correlation between scattering paths and their different
impact on classification, this work focuses on learning a data-
dependent wavelet scattering network within a large-margin
setting.



Fig. 2. A scattering transform is a cascade of wavelet decom-
positions.

2.3. Kernel extraction

The proposed method automatically selects optimal wavelet
scattering paths for a given classification problem. This can
be achieved by associating each path of the scattering trans-
form with a base kernel and employing an MKL approach.
We use Morlet wavelets to scatter signal information into
multiple paths:

ψ(x, y) =
ζ2

2πσ2
ψ

e
− x

′2+ζ2y
′2

2σ2
ψ (eiξx

′

− β) (8)

Let θ ∈ [0, π] denote the orientation of the filter, x
′

=
xcosθ + ysinθ, y′ = −xsinθ + ycosθ. β � 1 ensures
that

∫
ψ(x, y)dxdy = 0. ζ and σψ = 2j ∗ σψ0

are the ec-
centricity and the standard deviation of the elliptic envelope,
respectively.

The spatial window φ is defined as:

φ(x, y) =
ζ2

2πσ2
φ

e
− x

′2+y
′2

2σ2
φ (9)

where σφ = 2J−1∗σφ0 is the standard deviation of the Gaus-
sian envelope.

Given a training set for binary classification which is
{(xi, yi)}Ni=1, xi ∈ Rn, yi ∈ {1,−1}. Instead of predefin-
ing dilation and rotation parameters of wavelets as (j, θ) ∈
{0, 1, . . . , J − 1}×{0, 1

Lπ, . . . ,
L−1
L π} as in a standard scat-

tering transform setting, we define the continuous set of all
possible wavelet parameter vectors (j, θ) as P = [0, J − 1)×
[0, π). In this case, for a wavelet scattering net of M lay-
ers, the set of path parameters Θ =

⋃M
i=1 Pi is infinite. We

randomly extract a finite set Θ0 ⊂ Θ, |Θ0| = d for initializa-
tion of scattering paths. This is achieved by first generating
a group of wavelets defined in (8) where dilation and orien-
tation parameters {ji}Ji=1 and {θi}Li=1 are randomly sampled
from [0, J − 1) and [0, π) and sorted in ascending order, re-
spectively. Then the finite set of paths are derived by con-
structing a randomly parameterized scattering network with

these wavelets in a frequency-decreasing way.
We consider Gaussian kernels in this paper : k(Rc,Rc)→

R. For any scattering path p = (λ1, . . . , λi, . . . , λm), λi =
2−jiθi, the corresponding kernel can be generated as follow-
ing:

kp = k(S[p]xi, S[p]xj)

= exp(−‖ S[p]xi − S[p]xj ‖2F
2σ2

) (10)

where σ is the bandwidth of kernels. The Gaussian kernel ex-
presses the similarity between two training instances mapped
in an infinite-dimensional space. The finite set of symmetric
positive definite kernels {kp}p∈Θ0

are called spanning ker-
nels. The multiple kernel kµ is the weighted product of span-
ning kernels in GMKL setting:

∀(xi, xj), xi, xj ∈ Rn ,
kµ(Sxi, Sxj)

= k([
√
µ1S[p1]xi, . . . ,

√
µdS[pd]xi],

[
√
µ1S[p1]xj , . . . ,

√
µdS[pd]xj ])

=

d∏
m=1

k(
√
µmS[pm]xi,

√
µmS[pm]xj)

=

d∏
m=1

k(S[pm]xi, S[pm]xj)
µm

=
∏
p∈Θ0

(kp)
µp

(11)

where µ � 0 is the kernel weight vector. As the weighted
product of similarities between each scattering path p, the
combined kernel kµ measures the proximity between scatter-
ing representations of two training instances.

2.4. Generalized IKL for scattering kernel selection

We employ the Generalized IKL algorithm to learn a combi-
nation of scattering kernels. The GIKL approach is a variant
of the IKL algorithm that can handle MKL problems with
a large number of kernels. As shown in equation (11), for
combination of multiple base kernels, GIKL uses a weighted
product instead of a convex combination of kernels, which
enables the usage of much richer feature representations com-
pared to the original IKL. In order to handle an endless num-
ber of kernls, GIKL applies an active constraint approach [4]
which starts from a guess on the active kernel set called span-
ning kernels, then uses an optimality condition to iteratively
add kernels to this set until optimality. This active set prin-
ciple defines active kernels as kernels with positive weights,
other kernels have no impact on the solution as their weights
are null.

Reformulate equation 1 as the following optimization



Algorithm 1: Scattering kernel learning algorithm
Input: Training set (xi, yi)1≤i≤N
Output: Scattering path set Θt and classifier f̂
(kp)p∈Θ0

← initialize kernels with randomly
parameterized scattering paths;
µ← 1

|Θ0|1;
t← 0;
while not suboptimal do

µ← GMKL solution with Θt;
Θt ← {p ∈ Θt, µp > 0};
Θ← random sample from Θ;
p̂← argmax

p∈Θ

T (p);

if T (p̂) > 0 then
Θt+1 = Θt

⋃
{p̂};

t = t+ 1;
else

Suboptimality reached;

problem:

min
µ

ω(µ) =


min
fµ,b,ξ

1
2‖fµ‖

2
H + C

N∑
i=1

ξi + η1Tµ

s.t. yifµ(xi) + yib ≥ 1− ξi ∀i
ξi ≥ 0 ∀i

s.t. µ ∈ RΘ
+

(12)
where η balances the sparsity of µ and the SVM structural
risk. The problem is non-convex so the point µ is suboptimal
when ω(µ) achieves a local minimum, then the KKT subop-
timality conditions are satisfied:

∃γ ∈ Rd+ , ∇ω(µ) + η1− γ = 0 (13)
s.t. µ � 0 , γiµi = 0

Then, in any case,

∇ω(µ) + η1 � 0 (14)

The combined kernel matrix can be formulated as K =
exp(−

∑
p∈Θ µpDp/2σ

2) according to (11), where (Dp)p∈Θ

are the distance matrices in the scattering domain. The sub-
optimality condition can then be formulated with the optimal
dual variable α̂ of equation (1):

T ≤ 0 with

∀p ∈ Θ ,

T (p) = − ∂ω

∂µp
(µ)− η

= − 1

4σ2
α̂TY (Dp ◦K)Y α̂− η

(15)

where Y = diag(y), ◦ is the Hadamard product. The problem
boils down to solving the following non-convex subproblem:

p̂ = argmax
p∈Θ

T (p) (16)

To solve this problem, as is shown in Algorithm 1, we start
with a few parameters Θ0 ⊂ Θ, and iterates between GMKL
algorithm and the search for the constraint violating kernel.
A random search Θ ⊂ Θ is applied at each iteration to find
a violating kernel kp̂. Given the number np̂ of it among Θ,
since it can be computed as:

np̂ =

{
g1(jp̂, θp̂) mp̂ = 1

g2(jp̂, θp̂) mp̂ = 2
(17)

g1(jp̂, θp̂) = (j1
p̂ − 1)L+ θ1

p̂

g2(jp̂, θp̂) =
1

2
L2(2J − j1

p̂ − 2)(j1
p̂ − 1) + (j2

p̂ − j1
p̂ − 1)L

+ (θ1
p̂ − 1)(J − j1

p̂)L+ θ2
p̂ + JL

where mp̂ denotes the layer of scattering path p̂. Let l ∈
{1, . . . ,mp̂} denote the layer of a wavelet in p̂, jlp̂ and θlp̂ are
the positions of wavelet paramters among sorted dilation and
orientation factors {ji}Ji=1 and {θi}Li=1, respectively. Thus
the corresponding scattering path parameters (jp̂, θp̂) ∈ Pmp̂
can be easily deduced from np̂.

At each iteration of the Algorithm 1, non-active kernels
are removed after solving the GMKL subproblem (1), then a
new kernel is added with a null weight. These new weights
form a feasible point of the new GMKL subproblem with
an objective equals to the optimal objective of the previ-
ous GMKL problem. As the new kernel violates the KKT
conditions, the current point is not optimal. The objective
can then be improved by solving the GMKL problem again.
The collection of path coefficients gives the scattering output
Sx = {S[p]x}p∈Θt once suboptimality is reached.

3. EXPERIMENTAL ANALYSIS

In this section, we present our experimental analysis on three
datasets, i.e., MNIST digits, KTH-TIPS texture, and CIFAR-
10 images. We apply a logarithm non-linearity to scattering
coefficients in training and testing process to seperate mul-
tiplicative low-frequency components owing to illumination
variations. For all the experiments, we learn translation in-
variant scattering networks computed to the second order, and
initialize Morlet wavelets by randomly sampling in the pa-
rameter set for each iteration. One-versus-all Gaussian kernel
SVMs are used for classification of data-dependent scatter-
ing features. As we will see, our algorithm learns scattering
kernels properly for each classification task.

3.1. Digit Recognition

For hand-written digit recognition, we apply our method on
the large scale MNIST database. MNIST is a data basis of



Fig. 3. Quadrature phase complex Morlet wavelets learned
by promoting maximum margin between digit 4 and all other
digits. Their real and imaginary parts are displayed respec-
tively on the left and on the right. Each pair of adjacent
wavelets are of the first and the second layer of a convolu-
tion path, respectively.

hand-written digits with at most 6× 104 training samples and
1× 104 test samples. The digits are size-normalized and cen-
tred in fixed-size images. We randomly select 250 images
among each class from the training samples for scattering net-
work learning process and initialize randomly parameterized
wavelets with J = 4 dilations, L = 4 orientations. The clas-
sification result is averaged over 10 runs.

Table 1. Classification accuracy (%) on MNIST Digits, with
different algorithms.

Method Accuracy

Trans scattering [12] 99.54
Haar scattering [13] 99.41
ConvNet [14] 99.47
Proposed 99.56

Morlet wavelets learned while promoting maximum mar-
gin between training samples of digit 4 and others are shown
in Figure 3. All scattering paths selected are of the second
layer, which suggests that path coefficients of deeper layers
carry more discriminative information. During our exper-
iments, we notice that out method selects only frequency-
decreasing paths if we also include other paths. Results of
several algorithms without preprocessing and distortion are
given in Table 1, which shows that our method outperforms
the state of the art.

3.2. Texture Analysis

For texture analysis, we use the KTH-TIPS texture dataset
for evaluation. The database is composed of 10 classes each
with 81 grey scale images of size 200× 200. Controlled scal-
ing, shearing and illumination changes exist within each class.
We initialize wavelets with dilation and orientation parame-
ters J = 5, L = 4 for each iteration and use the mean of each
path as the output coefficient. SVM and MKL parameters C,

η and σ are tuned according to a five-fold cross validation
with resamplings among the training set.

Table 2. Classification accuracy on (KTH-TIPS, 2004)
database, obtained by different algorithms. Columns corre-
spond to different training sizes for each class.

Training size 5 20 40
BIF [15] - - 98.5
SRP [16] - - 99.3
COX [17] 80.2±2.2 92.4±1.1 95.7±0.5
Trans scat [12] 69.1±3.5 94.8±1.3 98.0±0.8
Roto-trans scat [8] 69.5±3.6 94.9±1.4 98.3±0.9
Proposed 80.5±3.4 95.3±1.2 98.5±0.7

Table 2 gives the mean classification rate and standard de-
viation over 200 random splits of training and testing sets for
different training sizes. ”Trans scat” corresponds to a transla-
tion invariant scattering as in [12]. ”Roto-trans scat” denotes
a joint translation and rotation invariant scattering in [8]. As
we can see, with a flexible model capturing more discrimina-
tive information, our approach improves to 80.5% for train-
ing size T = 5 compared to the standard translation invariant
scattering. Due to the lack of orientation changes within each
class in the database, our method has an advantage compared
to state of the art algorithms when the training size is small,
and achieves performance close to the best results for larger
training sizes.

3.3. CIFAR-10 Images

CIFAR-10 color images contains at most 5×104 training sam-
ples and 1× 104 testing samples of 32× 32 pixels, which are
much more complex than MNIST digits. It is composed of
10 classes such as ”airplanes”, ”birds”, ”ships”. The 3 color
bands are represented with Y,U, V channels and we learn
scattering networks independently in each channel. Setting
J = 4, L = 4, we again learn scattering transforms with dif-
ferent training sizes.

Table 3. Classification accuracy (%) comparison on CIFAR-
10 images using scattering network learned with GMKL algo-
rithm, first-order data-dependent scattering network, and pro-
posed second-order scattering network.

Algorithm GMKL First-order Proposed
T = 500 56.87 52.68 60.82
T = 1000 65.50 56.24 68.72
T = 2000 69.13 60.43 73.17

To evaluate the quality of our learned scattering network,
we compare with ”GMKL” and ”First-order”. In which



”GMKL” denotes learning a second-order scattering network
with a finite number of kernels using GMKL algorithm, and
”First-order” denotes learning a first-order scattering trans-
form where J = 4, L = 8 with GIKL algorithm. Table 3
lists the mean recognition accuracy for each method over 10
runs where T denotes the training size. The results demon-
strate that our data-dependent second-order scattering trans-
form outperforms the other two significantly for all training
sizes, implying that second-order scattering coefficients carry
more discriminative information compared to first-order ones,
and that the active kernel approach succeeds in improving the
discrimination of the multiple kernel by handling a large num-
ber of base kernels.

4. CONCLUSION

In this paper, we propose a novel approach to learn a transla-
tion invariant scattering network jointly with an SVM by cast-
ing the problem as an MKL problem. By choosing a specified
family of wavelet filters which can be defined by a few pa-
rameters, The wavelet scattering paths can be deduced from
the learned sparse multiple kernels. One advantage of our
approach is that the number of paths and the corresponding
wavelets are automatically learned from training data instead
of predetermined. Numerical experiments on three datasets,
including handwritten digits, images textures, and tiny color
images show promising results of the proposed algorithm. For
future works, we will investigate learning wavelet convolu-
tion networks with other types of classifiers, e.g., graphical
models, for better discriminative analysis.

5. REFERENCES

[1] L. D. Vignolo, D. H. Milone, H. L. Rufiner, et al., “Par-
allel implementation for wavelet dictionary optimization
applied to pattern recognition,” in Proceedings of the 7th
Argentine Symposium on Computing Technology. 2006.

[2] L. D. Vignolo, H. L. Rufiner, D. H. Milone, et al.,
“Evolutionary splines for cepstral filterbank optimiza-
tion in phoneme classification,” EURASIP Journal on
Advances in Signal Processing, vol. 2011, pp. 8, 2011.

[3] T. N. Sainath, B. Kingsbury, A. Mohamed, et al.,
“Learning filter banks within a deep neural network
framework,” in IEEE Workshop on Automatic Speech
Recognition and Understanding, pp. 297–302. 2013.

[4] F. Yger and A. Rakotomamonjy, “Wavelet kernel learn-
ing,” Pattern Recognition, vol. 44, no. 10, pp. 2614–
2629, 2011.

[5] M. Sangnier, J. Gauthier, and A. Rakotomamonjy, “Fil-
ter bank kernel learning for nonstationary signal classifi-
cation,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 3183–3187. 2013.

[6] M. Sangnier, J. Gauthier, and A. Rakotomamonjy, “Fil-
ter bank learning for signal classification,” Signal Pro-
cessing, vol. 113, pp. 124–137, 2015.

[7] J. Andén and S. Mallat, “Multiscale scattering for au-
dio classification,” in Proceedings of the ISMIR 2011
conference, pp. 657–662. 2011.

[8] L. Sifre and S. Mallat, “Rotation, scaling and deforma-
tion invariant scattering for texture discrimination,” in
Computer Vision and Pattern Recognition, vol. II, pp.
1233–1240. 2013.

[9] E. Oyallon and S. Mallat, “Deep roto-translation scat-
tering for object classification,” in Computer Vision and
Pattern Recognition. 2015.

[10] P. Gehler and S. Nowozin, “Infinite kernel learning,” in
NIPS Workshop on Kernel Learning: Automatic Selec-
tion of Optimal Kernels. 2008.

[11] M. Varma and B. R. Babu, “More generality in efficient
multiple kernel learning,” in Proceedings of the 26th
Annual International Conference on Machine Learning,
pp. 1065–1072. 2009.

[12] J. Bruna and S. Mallat, “Invariant scattering convolu-
tion networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1872–1886,
2013.

[13] X. Chen, X. Cheng, and S. Mallat, “Unsupervised deep
haar scattering on graphs,” in Advances in Neural Infor-
mation Processing Systems, pp. 1709–1717. 2014.

[14] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolu-
tional networks and applications in vision,” in Proceed-
ings of 2010 IEEE International Symposium on Circuits
and Systems, pp. 253–256. 2010.

[15] M. Crosier and L. D. Griffin, “Texture classification
with a dictionary of basic image features,” in IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pp. 1–7. 2008.

[16] L. Liu, P. Fieguth, G. Kuang, et al., “Sorted random
projections for robust texture classification,” in IEEE
International Conference on Computer Vision, pp. 391–
398. 2011.

[17] H. Nguyen, R. Fablet, and J. Boucher, “Visual tex-
tures as realizations of multivariate log-gaussian cox
processes,” in IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2945–2952. 2011.


